
Document Object Model for IoT

Building IoT Systems with HTML and JavaScript

Alvaro Fernandez
a@domiot.org
domiot.org

7 June 2025

Abstract

By using HTML and JavaScript, developers can create interactive IoT sys-
tems in the same way they create web pages.
IoT systems are often programmed by linking low-level input and out-
put components, rather than defining interactions in terms of meaningful,
higher-level abstractions. Systems’ behavior is frequently implemented in
a non-standardized, rigid manner. Even data structures, intended for or-
ganizing data, are sometimes misapplied to ”script” device behavior. This
makes systems difficult to understand, maintain, and adapt, where even
small changes require specialized reprogramming.
While existing efforts, such as the W3C Web of Things, provide standard-
ized APIs and semantic models to address these challenges, we argue that
widely adopted web technologies, specifically HTML and the DOM API,
can further simplify IoT development and make it more accessible.
We propose extending the Document Object Model (DOM) for IoT (DOMIoT)
and treating interactive IoT systems like interactive documents. Develop-
ers can describe these systems using meaningful HTML elements and at-
tributes, and implement behavior with standard JavaScript. Scripts can
listen and react to events such as press, release or change, modifying the
physical environment using the same methods they use to update content
on a web page.

1. Demonstration

Consider the following simple yet illustrative scenario:

To assist customers, a supermarket has installed large buttons with images at
the entrance of each aisle. When a customer presses a button, the corresponding
shelving unit lights up in blue.

1



Figure 1: Image of a shelving unit lighting up in blue after a button is pressed.
(image generated with dall.e.)

To simplify the creation of this experience, we propose using the same approach
as in web development with HTML and JavaScript:

<html>

<iot-aisle id="aisle6" name="Coffee, Hot Beverages, Cookies & Chocolate">

<iot-button-binding id="a6ButtonBinding" location="/dev/buttons6">

<iot-relay-binding id="a6RelayBinding" location="/dev/relay12">

<iot-button id="a6Product1Button" shelving-unit-id="a6L1" binding="a6ButtonBinding">

<iot-button id="a6Product2Button" shelving-unit-id="a6L2" binding="a6ButtonBinding">

<iot-button id="a6Product3Button" shelving-unit-id="a6L3" binding="a6ButtonBinding">

<iot-button id="a6Product4Button" shelving-unit-id="a6R1" binding="a6ButtonBinding">

<iot-button id="a6Product5Button" shelving-unit-id="a6R2" binding="a6ButtonBinding">

<iot-button id="a6Product6Button" shelving-unit-id="a6R3" binding="a6ButtonBinding">

<iot-shelving-unit id="a6L1" name="Ground Coffee"

style="background-color:white;" binding="a6RelayBinding">

<iot-shelving-unit id="a6L2" name="Coffee Pods & K-Cups"

style="background-color:white;" binding="a6RelayBinding">

<iot-shelving-unit id="a6L3" name="Cookies and Biscuits"

style="background-color:white;" binding="a6RelayBinding">

<iot-shelving-unit id="a6R1" name="Premium Chocolate & Candy"

style="background-color:white;" binding="a6RelayBinding">

<iot-shelving-unit id="a6R2" name="Tea Selection"

style="background-color:white;" binding="a6RelayBinding">

<iot-shelving-unit id="a6R3" name="Snack Cakes, Muffins, Mini Pastries"

style="background-color:white;" binding="a6RelayBinding">

</iot-aisle>

<script src="domiot.min.js"></script>

2



<script>

// retrieve all the buttons of the aisle number 6 in order

const buttons = document.querySelectorAll(’#aisle6 iot-button’);

// Light up each shelving unit in blue when its button is pressed,

// and switch it back to white when the button is released.

for (let i = 0; i < buttons.length; i++) {

const button = buttons[i];

// when a button is pressed, light up the corresponding shelving unit in blue.

button.addEventListener(’press’, (ev) => {

const shelvingUnitId = ev.target.getAttribute(’shelving-unit-id’);

if (!shelvingUnitId) return;

const shelvingUnit = document.getElementById(shelvingUnitId);

if (!shelvingUnit) return;

// change the background color of the shelving unit to blue,

// this changes the light color.

shelvingUnit.style.setProperty(’background-color’,’blue’);

});

// when a button is release light up its corresponding shelving unit

// in white (normal ligths).

button.addEventListener(’release’, (ev) => {

const shelvingUnitId = ev.target.getAttribute(’shelving-unit-id’);

if (!shelvingUnitId) return;

const shelvingUnit = document.getElementById(shelvingUnitId);

if (!shelvingUnit) return;

// change the background color of the shelving unit to white,

// this changes the light color.

shelvingUnit.style.setProperty(’background-color’,’white’);

});

}

</script>

</html>

In this example, we use HTML to describe the interactive IoT system: aisle
number 6, the buttons at the entrance, and the shelving units on the left and
right sides of the aisle. After describing the components of our system, we use
JavaScript and the standard DOM API methods to script the system’s behavior:
a shelving unit lights up in blue when a person presses the corresponding physical
button (triggering a press event on the button element).

In addition to lighting up a shelving unit in blue when a button is pressed, the
supermarket wants to project a commercial on the floor to promote one product
per shelving unit:

3



...

<iot-aisle id="aisle6" name="Coffe ...

...

<iot-video-binding id="a6VideoBinding" location="/dev/video6">

...

<iot-button id="a6Product2Button" shelving-unit-id="a6L2" binding="a6ButtonBinding">

...

<iot-shelving-unit id="a6L2" name="Coffee Pods & K-Cups"

video-src="/path/to/commercial.mp4"

style="background-color:white;" binding="a6RelayBinding">

<iot-video id="a6Video" binding="a6VideoBinding"></iot-video>

...

</iot-aisle>

...

<script>

// retrieve the aisle 6 video player

let a6Video = document.getElementById("a6Video");

const buttons = document.querySelectorAll(’#aisle6 iot-button’);

for (let i = 0; i < buttons.length; i++) {

const button = buttons[i];

// when a button is pressed, light up the corresponding

// shelving unit in blue and project a commercial.

button.addEventListener(’press’, (ev) => {

...

// light the shelving unit in blue.

shelvingUnit.style.setProperty(’background-color’,’blue’);

// retrieve the commercial to play and play it.

const videoSrc = shelvingUnit.getAttribute(’video-src’);

if (videoSrc) {

a6Video.src = videoSrc;

a6Video.load();

a6Video.play();

}

});

...

}

</script>

</html>

In this example, we continue using JavaScript to light up a shelving unit in blue,
project a promotional video on the floor when a person presses a button on the
table.

4



Figure 2: Image showing how The ”Coffee Pods & K-Cups” shelving unit lights
up in blue when its button is pressed, at the same time a commercial is projected
on the floor. (image generated with dall.e.)

If products are moved to different shelving units or a brand bids higher to include
its promotional video, we can easily update the script to change the behavior of
the interactive IoT experience.

Notice that if the computer running the script is powerful enough and connected
to a screen, we can take advantage of this by using a web browser to interpret
the script, project the video, and play the sound. We simply need to use the
integrated HTML5 <video> element and include it within the <body></body>
tags:

...

<body>

<video id="a6Video" muted controls></video>

</body>

<script src="domiot.min.js"></script>

<script>

...

// retrieve the commercial to play and play it using HTML5 video.

const videoSrc = shelvingUnit.getAttribute(’video-src’);

if (videoSrc) {

a6Video.src = videoSrc;

a6Video.load();

a6Video.play();

}

...

Other smart store enhancements could be implemented, for example adjusting
the behavior of the shop lights based on the time of day, month of the year, or
latitude, and adjusting the air conditioning based on local weather conditions.

5



2. Introduction

Interactive shops and homes, intelligent surveillance systems, smart logistics and
factories, and many other IoT systems rely on software to define their behavior.

However, at the software level, IoT systems are often represented in terms
that mirror their physical components (e.g., motion detector 003, relay 026,
screen 002) rather than abstractions meaningful to humans (e.g., room, blue,
door). This may explain why behavior is frequently implemented by linking low-
level input and output components such as connecting motion detector 003 to
relay 025 and relay 026 instead of expressing richer interactions between se-
mantic elements such as ”when a person enters a room, the lamps gradually
increase their brightness, and music begins to play”.
Moreover, not using a standardized programming interface (API) for managing
the elements of an IoT system and their interactions may contribute to the use of
rigid and ad hoc architectures. Sometimes, this even result in the misapplication
of data structures like maps or JSON, intended for organizing data, to ”script”
device behavior, rather than using scripts.
As a result, developers often struggle to understand, modify or debug such sys-
tems. This situation also hinders interoperability and lowers the quality of data
collection, which in turn affects data analysis.

Developers need a technology that encourage describing interactive IoT systems
using semantic elements, making explicit their meaning and their relationships,
coupled with a programming interface to manipulate them. Ideally, such tech-
nology should be simple, easy to learn, use, and adopt.

HTML is a markup language that allows developers to define custom tags and
attributes with domain-specific meaning. This makes HTML well-suited for
describing IoT systems.
The Document Object Model (DOM) is a programming interface that represents
an HTML document as a tree of nodes, and which methods allow scripts to
dynamically access and change the tree content. It also provides methods for
listening to and responding to user or system-generated events [3]. This means
the DOM can represent an IoT system as a structured tree of nodes and enable
scripts to react to physical events and update the system.

HTML and DOM appear to be well suited for the development of interactive
IoT systems. Moreover, these technologies are open, platform-independent and
easy to learn. They are widely adopted, enjoy support from a large community,
and are familiar to millions of developers.

In this paper, we propose using HTML to describe IoT systems, and extend-
ing the DOM programming interface to enable the updating of physical com-
ponents using JavaScript, just as we update components on a web page. The
DOM for IoT (DOMIoT) fully preserves the original DOM API, exposing exactly
the same methods as those used in web development such as getElementById,

6



setAttribute and addEventListener.

Other initiatives, such as the W3C Web of Things [4], have made valuable con-
tributions by defining APIs for IoT interaction. However, we argue that the
functionality provided by HTML and the DOM API is sufficient, has long been
available, and is well suited to this purpose with minimal tuning. We believe
our proposal is compatible with the W3C’s vision.

This work builds upon concepts introduced in a prior patent by the author [5],
which proposed using HTML, the DOM and a web browser to describe and
orchestrate IoT systems. The solution enabled junior developers and trainees,
familiar only with web development, to contribute effectively to building IoT
experiences.

Some terms in this document are defined and described in the HTML standard
and the DOM standard [1, 2, 3] in the context of web programming. The terms
presented in this paper are in the context of IoT.

3. IoT System

An IoT system is a network of physical devices that sense, communicate, react
and interact with the environment, and that can collect data.

4. I/O

Inputs are signals, data, or information collected from the environment, typically
through sensors or networks. Examples include: temperature readings, motion
detection signals, button press/release signals, GPS coordinates or weather data
received from the internet.

Outputs are signals, data, or information sent to update or affect the environ-
ment, typically directed to actuators, displays, or server interfaces. Examples
include: a signal sent to a relay, an alert sent via the internet or a an information
transmitted to an AI agent.

Input components produce electrical or digital signals that are processed by the
drivers, while output components receive electrical or digital signals output by
the drivers.

5. Drivers

Drivers are programs that enable communication with physical I/O components.
The DOM for IoT uses bindings to allow communication between the DOM
elements and the drivers.

7



6. HTML Document

In the context of IoT, an HTML document is a strucured and hierarchical descrip-
tion of an IoT system. The HTML document is formed of contextual semantic
elements such as room, product, video and wardrobe and attributes such as
locked=true, message="Welcome" and style="background-color:white;",
related to how the IoT system is perceived by a user or a non-technical per-
son, which for most cases do not correspond with the physical input and output
components of the system such as cameras, motion detectors, and LEDs.

<html>

<iot-hotel name="Domos Hotel">

<iot-room id="room334">

<iot-door id="r334MainDoor" locked message="Bienvenue à Paris"

binding="lockBinding LCDBinding">

</iot-room>

</iot-hotel>

</html>

Figure 3: Simplified example of an HTML document of a smart hotel.

When the HTML describing an IoT system is parsed the result is a DOM tree.

The DOM tree is a data structure that represents the HTML document as a
hierarchical tree of Node objects. Each node corresponds to a document compo-
nent, such as element or attribute. This tree structure defines parent-child and
sibling relationships. The DOM tree can be accessed, traversed and modified
using the DOM for IoT API. To link the DOM tree elements with the physical
components the DOM for IoT use bindings.

html

|-- iot-hotel -- name = "Domos Hotel"

|-- iot-room -- id = "room334"

|-- iot-door --- id = "r334MainDoor"

|-- locked

|-- message = "Bienvenue à Paris"

|-- binding = "lockBinding LCDBinding"

Figure 4: Simplified example of a DOM tree of a smart hotel.

7. DOMIoT

The DOMIoT (Document Object Model for IoT) is a programming interface
(API) that allows to dynamically access and change the content of the nodes of
a DOM tree, dispatch and listen to events, and communicate with the drivers
of the physical components of an IoT system. Its methods mirror those of the
DOM in web development, elements can be accessed using methods such as
document.getElementById and document.querySelectorAll. Attributes can

8



be accessed using the el.getAttribute method and modified (including style
properties) using methods such as el.setAttribute and el.style.setProperty.
Events can be dispatched using el.dispatchEvent and listened using the
el.addEventListener method.

const door = document.getElementById(’r334MainDoor’);

if (!door) return;

door.addEventListener(’change’, (ev) => {

if (ev.target.locked) {

door.setAttribute(’message’, ’Locked.’);

} else {

door.setAttribute(’message’, ’Unlocked.’);

}

});

door.setAttribute(’unlocked’, true);

The script above retrieves the door of room 334 and sets and unlocked attribute
using the setAttribute method, triggering a change event. Since the door’s
locked attribute is not present, it updates the door’s message attribute value
to ”Unlocked”.

8. Elements

An element refers to a single node in the HTML document structure, typi-
cally representing part of the logical structure (e.g. <iot-room></iot-room>,
<iot-door/>, <iot-wardrobe></iot-wardrobe>).
Elements have attributes associated that provide additional information.

9. Attributes

Attributes are included inside the opening tag of elements in an HTML docu-
ment.

<iot-door id="r334MainDoor" locked message="Bienvenue à Paris"

binding="lockBinding LCDBinding">

In this example, the message attribute contains a text message to display on
the door’s LCD screen, while the locked attribute indicates that the the door
is locked (using an electronic lock).

Modifying an attribute can trigger an update to the physical components. For
example, replacing the locked attribute with unlocked in a door element causes
the electronic lock to unlock and displays “Unlocked” on the door’s LCD screen,
as demonstrated in the example in Section 7.

9



The special style attribute allows you to apply CSS directly to an element to
control its appearance, as demonstrated in the supermarket example in Section
1.

10. Events

An event is an action or occurrence. Events can be user actions, such as press
[a button] or move [in a room] or occurrences, such as [heart] beat or change

[in a battery level]. Events have a type (e.g. press, release, move) and can
have values attached such as x and y. Events also have a target, which is the
element on which the event was originally triggered.

{

"type": "move",

"target": {

"id": "person1",

"tagName": "IOT-PERSON"

},

"detail": {

"x": 11500,

"y": 25200

}

}

Figure 5: Partial structure of an event

As an example, if a person is moving within the gym of a hotel toward the sauna,
move events are dispatched on an iot-person element. The move event carries
two values, x and y, corresponding to the position of the iot-person element.
Events can be listened to using the addEventListener method:

person.addEventListener(’move’, (ev) => {

const position = ev.detail;

if (position.y > 30000 && position.x > 12000 && position.x < 18000) {

const audioAdvisory = document.getElementById(’saunaSafetyInstructionsAudio’);

if (audioAdvisory) {

audioAdvisory.play().catch(err => console.error(’Audio play failed:’, err));

}

}

});

The script above uses the addEventListenermethod to listen for the move event,
triggering an audio advisory on sauna safety when a person enters a designated
area of a hotel gym.

10



11. Bindings

The binding elements link the DOM elements with physical components.

They have two core attributes: id and location, without which they can’t work.

<iot-lock-binding id="lockBinding" location="/dev/lock">

<iot-LCD-binding id="LCDBinding" location="/dev/lcd">

The id attribute identifies the binding so it can be referenced by other elements.
The location attribute specifies a reference to the driver with which the binding
communicates. This reference can be a file path (as in the example above), a
URL, a configuration formatted like a style attribute, or any other type of
reference. In all cases, the binding logic and operation are determined by its
type and implemented within each binding class.

Bindings listen for changes in the attributes of the elements that reference them
(including CSS property changes). They parse these attributes into values inter-
pretable by a driver and then communicate these values to that driver. Bindings
also consume and interpret values from drivers, updating the DOM accordingly
by modifying an attribute or dispatching an event.

For an element to use a binding, it must include the binding’s id in its binding
attribute. An element can use more than one binding. In the following ex-
ample an iot-door element uses two bindings identified by lockBinding and
LCDBinding.

<iot-door binding="lockBinding:0 LCDBinding:0" unlocked>

Numeric indexes can be specified in the binding attribute value to indicate
the element’s position within the binding, though it is not mandatory. In the
example above, iot-door has index 0 in both bindings. Indexes help indicate
the position of parsed values within the driver’s communication message. The
index is specified by appending a number (from 0 to n) after a colon character ’:’
following the binding id. If no index is provided, the binding assigns one based
on the order of appearance of elements in the HTML document.

<iot-door binding="lockBinding LCDBinding" unlocked>

In this example, no indexes are specified. Assuming these are the first references
to lockBinding and LCDBinding within an element, the iot-door element will
have the index 0 in both bindings. The result is the same as in the previous
example that specifies indexes.

11



12. System Operation

Figure 6: Setup and operation of an IoT system using HTML and the DOMIoT

The setup and operation of an IoT system using HTML and the DOMIoT is as
follows:

Physical components (e.g., sensors, actuators, displays, etc.) should be in place
and connected directly or indirectly to a computer such as a single-board com-
puter (SBC) with the appropriate drivers installed, along with a DOMIoT im-
plementation running. Once the HTML is parsed and the DOM tree is gener-
ated, the DOMIoT establishes the declared bindings, linking DOM elements to
physical components. Scripts can use the DOMIoT API to access and modify
element attributes through methods such as getElementById, getAttribute,
setAttribute, and setProperty. When a binding detects a relevant change in
an attribute (including CSS properties), it translates this change into a driver-
understandable value and communicates it to the driver, for example, by writing
to a driver file. In the other direction, physical changes are communicated from
the physical components to the bindings through their drivers, allowing the
bindings to update element attributes (including CSS properties) and/or dis-
patch events. Scripts listening to these events, which are triggered by physical
interactions, an can then react by updating attributes, resulting in changes to
the physical components of the interactive IoT system.

13. Semantic Structure

When we refer to semantics in this paper, we do not mean semantic HTML,
although the concept is inspired by it. Since there is currently no HTML for IoT
standard, IoT elements are for the moment custom elements and do not carry
a predefined semantic meaning. Their semantics are instead defined by the
developer based on the domain of their use, making them inherently domain-
dependent. As a result, these semantics may not translate directly across differ-
ent domains. Given the wide variety of IoT applications, it may be wise not to
aim for a universal, cross-domain standard. We suggest grouping and document-
ing element implementations by domain. Considering this, we can state that for
elements, attributes, and events to be semantic, they should clearly convey their
meaning and role within their domain to developers, machines, data analysts,
AI agents, and others.

12



Table 1 presents examples comparing non-semantic and semantic elements.

Semantics in IoT are often addressed through topics such as Semantic IoT and
IoT ontologies. Some initiatives, such as the W3C’s Web of Things (WoT)
[4], provide frameworks that can be used to describe and thus document ele-
ments’ semantics. However, it is important to acknowledge that some of these
approaches may introduce a level of complexity and overhead that is not well-
suited to all IoT scenarios. Just as HTML elements, attributes, and events on
the web are sufficiently self-descriptive through their representation, elements,
attributes, and events in IoT, should be sufficiently self-descriptive through an
HTML or a JSON representation.

Non-semantic elements Semantic elements

Physical space
+ motion sensors
+ camera
+ image recognition software room, person

Door
+ Door lock
+ LCD screen door element with locked/unlocked

and message attributes

LED module
+ enclosure lamp with style

and brightness attributes

Relay
+ Different color
LED rope lights background-color style

of a shelving-unit

Touch sensor button

4 touch sensors slider

1000 sensors
+ 500 actuators
+ 20 displays supermarket

hotel

house

4 touch sensors touched
one after another
in a certain order slide event dispatched

on a slider element

Physical button pressed press event dispatched on a button element

Table 1: Examples of non-semantic vs semantic elements.

A Non-semantic structure refers to the lack of inherent meaning or purpose

13



in the chosen elements or sub-structures. Its form or usage is not primarily
guided by intrinsic meaning but by what is actually there (a collection of sensors
and actuators). In such a structure, the hierarchy may not accurately reflect the
relationships between elements. The structure may be correct, but its lack of
meaning erodes understandability.

A Semantic structure refers to the organization or arrangement of elements
within a given system where this organization is predicated on the meaning, role,
and logical interrelationships of these constituent elements. This organization
goes beyond the underlying technical structure.

The HTML document and the DOM tree are represented as hierarchical trees,
reflecting how elements are nested and related as parents, children, and siblings.
These technologies encourage developers to consider elements in terms of their
meaning, role, and relationships within these structures. Attributes convey both
descriptive properties and the current state of elements, enhancing their semantic
meaning.
Even though HTML and the DOMIoT encourage the use of semantic structures,
they do not, per se, enforce it. The adoption of a semantic structure is ultimately
the developer’s responsibility.

14. Potential

The following outlines some of the potential offered by this approach.

As demonstrated in the example in Section 1, web applications can be integrated
with IoT. By combining HTML, DOMIoT, and a web browser with a lightweight
server running on a computer such as a single-board computer (SBC), it is pos-
sible to interconnect web elements with IoT elments within the same HTML
structure and script.

HTML and the DOM are among the most widely used technologies, supported
by a vast community and a rich ecosystem of tools and libraries, all of which are
fully compatible with the approach presented in this paper.

Script files can be generated dynamically by a program that assists the user
through an intuitive interface to define behavior. System behavior can then
be updated remotely simply by replacing the script file, with no compilation
required.

General-purpose AI models have been extensively trained on HTML and web-
based JavaScript. When provided with an HTML document describing an IoT
system, such AIs are well-equipped to generate scripts using the DOMIoT.

Using a semantic structure facilitates communication with AI agents. For ex-
ample, consider the message: ”I’m coming home. You can start the washing
machine. When I’m five minutes from home, please prepare coffee. When I open

14



the door, I want a relaxing scenario.” In this context, elements such as person,
house, washing-machine, coffee-machine, lamp, and audio are semantically
meaningful and interpretable by agents. AI agents can use these well-defined con-
cepts not only to execute simple commands, but also to script, execute, store,
and improve scenarios over time.

The structure of a semantic event contains richer data than a simple sensor-
value pair does, including a type, the element that triggered the event, and
associated values. Events can be sent over the internet to an event broker for
use in analytics, metrics, or statistical studies.

The examples in this paper do not cover distributed systems. However, in real-
world scenarios, such as smart homes, hotels, and shops, it may be undesirable
to centralize all behavior. In such cases, a decentralized architecture can be
adopted, where multiple subsystems operate independently, each processing its
own HTML document and associated script, much like separate pages of a web-
site. These subsystems can communicate over a local network using the binding
element or other methods to coordinate actions.

15. Conclusion

We propose using HTML and an extension of the DOM for IoT (DOMIoT) to
develop interactive IoT systems. HTML is used as is, while DOMIoT exposes the
same methods as the standard DOM API in web development, with additional
binding capabilities that enable communication with physical components via
drivers.

The hierarchical nature of HTML and the DOM tree encourages (although does
not enforce) the use of semantic elements and structures, while the DOM API
provides a standardized way to access, modify, and interrelate these elements.

Taken together, these technologies and principles contribute to producing struc-
tures, code, and data that are easier to understand for multiple actors, such
as developers, other systems, AI agents, and data analysts, resulting in more
maintainable and adaptable code, improved interoperability, and higher data
quality.

The proposed approach may inform future efforts to build more intelligent IoT
systems.

Acknowledgments

I would like to sincerely thank all my coworkers at Indigo. In particular, I am
grateful to Alexander Fuentes for the insightful discussions that helped shape the
initial specifications in 2018-2019, and to Mohamed Akaarir for critically chal-
lenging these specifications and helping to refine the solution. I also extend my
thanks to all colleagues who participated in testing and validating the solution.

15



Furthermore, I wish to thank CEOs Laurent Meoni and Guillaume Waline for
their continuous support.

References

[1] WHATWG, HTML Living Standard, https://html.spec.whatwg.org/

[2] WHATWG, DOM Living Standard, https://dom.spec.whatwg.org/

[3] Mozilla Foundation, Document Object Model (DOM),
https://developer.mozilla.org/docs/Web/API/Document_Object_Model

[4] W3C, Web of Things, https://www.w3.org/WoT/

[5] Alvaro Fernandez-Yanez, Guillaume Waline, and Laurent Meoni, Interactive
Communication System Especially for the Analysis of Interaction Events,
French Patent FR3101178A1, filed September 2019, published March 2021,
available at:
https://patents.google.com/patent/FR3101178A1/en

16


